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The fusion of multiple imaging modalities offers many ad-
vantages over the analysis, separately, of the individual sensory
modalities. In this paper we present a unique approach to the
integrated analysis of disparate sources of imagery for object
recognition. The approach is based on physics-based modeling
of the image generation mechanisms. Such models make possible
features that are physically meaningful and have an improved
capacity to differentiate between multiple classes of objects. We il-
lustrate the use of physics-based approach to develop multisensory
vision systems for different object recognition application domains.
The paper discusses the integration of different suites of sensors,
the integration of image-derived information with model-derived
information, and the physics-based simulation of multisensory
imagery.

I. INTRODUCTION

It is well known that the human visual system extracts a
great deal of information from a single gray level image.
This fact motivated computer vision researchers to devote
much of their attention to analyzing isolated gray scale
images. However, research in computer vision has made it
increasingly evident that formulation of the interpretation of
a single image (of a general scene) as a computational prob-
lem results in an underconstrained task. Several approaches
have been investigated to alleviate the ill-posed nature
of image interpretation tasks. The extraction of additional
information from the image or from other sources, including
other images, has been seen as a way of constraining
the interpretation [1]. Such approaches may be broadly
grouped into the following categories: 1) the extraction
and fusion of multiple cues from the same image, e.g., the
fusion of multiple shape-from-X methods (e.g., shape from
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shading, shape from texture), 2) the use of multiple views
of the scene, e.g., stereo, and more recently 3) the fusion
of information from different modalities of sensing, e.g.,
infrared and laser ranging.

Various researchers have referred to each of the above
approaches as multisensory approaches to computer vision.
The order in which the above approaches have been listed
indicates, approximately, the chronological order in which
these methods have been investigated. The order is also
indicative of the increasing amount of additional informa-
tion that can be extracted from the scene and which can be
brought to bear on the interpretation task.

Past research in computer vision has yielded analytically
well defined algorithms for extracting simple information
(e.g., edges, two-dimensional (2-D) shape, stereo range,
etc.) from images acquired by any one modality of sens-
ing. When multiple sensors, multiple processing modules,
and/or different modalities of imaging are to be combined in
a vision system, it is important to address the development
of 1) models relating the images of each sensor to scene
variables, 2) models relating sensors to each other, and
3) algorithms for extracting and combining the different
information in the images.

The choice of a computational framework for a mul-
tisensory vision system depends on the application task.
Several computational paradigms have been employed in
different recent multisensory vision systems. The paradigms
can be categorized as: 1) statistical, 2) variational, 3) arti-
ficial intelligence (AI), and 4) phenomenological (physics-
based) approaches. Statistical approaches typically involve
Bayesian schemes which model multisensory information
using multivariate probability models or as a collection of
individual (but mutually constrained) classifiers/estimators.
These schemes are appropriate when the domain of appli-
cation renders probabilistic models to be intuitively natural
forms of models of sensor performance and the state
of the sensed environment. An alternative, deterministic,
approach is based on variational principles wherein a cri-
terion functional is optimized. The criterion functional
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implicitly models world knowledge and also explicitly
includes constraints from multiple sensors. Adoption of
this approach results in an iterative numerical relaxation
approach which optimizes the criterion functional.

The complexity of the task sometimes precludes simple
analytical formulations for scene interpretation tasks. Mod-
els relating the images of each sensor to scene variables,
models relating sensors to each other, and algorithms for
extracting and combining the different information in the
images usually embody many variables which are not
known prior to their interpretation. This necessitates the
use of heuristic and empirical methods for analyzing the
images. The development of complex interpretation strate-
gies and knowledge representational mechanisms for using
such methods has been intensively researched in the field
of AI. Many of these ideas can be employed in the design
of a multisensory vision system.

Most of the research (to date) in multisensory computer
has adopted either a statistical-, variational-, or AI-based
approach. Only very recently has research been directed
at using phenomenological or physics-based models for
multisensory vision. These models are based on physical
laws, e.g., the conservation of energy. Such models relate
each of sensed signals to the various physical parameters of
the imaged object. The objective is to solve for the unknown
physical parameters using the known constraints and signal
values. The physical parameters then serve as meaningful
features for object classification.

Denote sensed information as. Each imaging modality
(viz. physical sensor) may yield many types of sensed
information . For example, we may have “thermal
intensity,” “stereo range,” “visual intensity,”

“visual edge strength,” etc. Let denote
the value of sensed information at any specified pixel
location . For the sake of brevity, will be used
instead of in the following. Each source of in-
formation is related to object parameters,, and ambient
scene parameters,, via a physical model of the following
general form

(1)

where and are the number of object and scene
parameters, respectively. Note that for each, only a subset
of the entire set of parameters has nonzero coefficients.
Examples of include visual reflectance of the surface,
relative surface orientation, material density, and surface
roughness. Examples of include ambient temperature,
direction of illumination, intensity of solar insolation, and
ambient wind speed. The functional form ofdepends on
the sensor used and the specific radiometric, photometric,
or projective principle that underlies image formation in
that sensor. In addition to the above, various natural laws
describe the physical behavior of the objects, e.g., principles
of rigidity and the law of the conservation of energy. These
lead to additional (known) constraints of the following
general form

(2)

The general problem is to use the functional forms (1) and
(2) established above to derive a featurethat depends
only the object properties, , and are independent of scene
variables, . In some cases, it may be possible to solve
for a specific object property itself. If this property is
a distinguishing and scene-invariant property of the object,
such as material density or thermal capacitance, then this
property can be used as the feature,, for recognition.
Note that in general, the equations are nonlinear, and
hence solving them is not straightforward. Also, it may
be possible to specify a larger number of equations than
required, thus leading to an overconstrained system. An
error minimization approach may then be used to solve
for the unknowns. Alternatively, an overconstrained system
supports the derivation of algebraic invariants [2] that are
functions of image information and physical properties of
objects, and invariant to scene conditions.

The physics based approach has been sucessfully adopted
for a number of scene interpretation tasks. Section II pro-
vides an overview of several of these applications—and
thus illustrates the usefulness of this paradigm as a general
approach for the interpretation of multisensory imagery.
Section III describes the integration of multisensory in-
formation for computing features based on physics-based
models where some of the information is obtained form
the image, and some of it is obtained from the model of
the hypothesized object. Another important issue related to
the interpretation of multisensory imagery is the simulation
of multisensory imagery. A unified scheme for generating
imagery as would be sensed by different co-boresighted
sensors is described in Section IV. Section V contains
concluding remarks.

II. I NTEGRATION OF DIFFERENT SENSING MODALITIES

The physics-based approach has been used to address,
successfully, a number of object recognition tasks that
rely on the analysis of multisensory imagery. We provide
below an overview of several of these approaches to
illustrate this paradigm. We describe the integration of
infrared and visual imagery for classifying objects occurring
in outdoor scenes into broadly defined classes, such as
vehicles, buildings, pavement, and vegetation. Next, we
describe the integration of underwater acoustic and visual
imagery for the classification of the imaged sea floor
into two types—sediment or manganese deposits. We then
describe the interpretation of different channels of polarized
radiation sensed by optical cameras, and by a synthetic
aperture radar (SAR) system. We end the section with brief
discussions on the fusion of some other sensing modalities
such as different channels of color information, and optical
and radar imagery.

A. Integration of Infrared and Optical Imagery

The interpretation of thermal and visual imagery of
outdoor scenes using a physics-based approach has been
described in [3]–[6]. The approach is based on a model
of energy exchange between the imaged surface and the
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(a) (b)

Fig. 1. (a) Energy exchange at the surface of an object in an outdoor scene and (b) equivalent
thermal circuit for the surface of the object.

environment (including the cameras). This approach allows
the estimation of internal object properties of the object
such as its ability to sink/source radiation, i.e., its thermal
capacitance. These estimates of internal object properties
are physically meaningful and powerful features for classi-
fying objects into broadly defined classes such as buildings,
vegetation, vehicles, and roads. These features are tolerant
to changes in viewing direction, illumination, surface coat-
ing, and ambient conditions. The approach can therefore be
used in different types of outdoor autonomous navigation
systems. It is interesting to note that the perceptual systems
in certain snakes combine thermal and visual imaging
senses to produce such a map of heat sinks and sources
[7]–[9].

An overview of this approach is presented. The analysis
of two types of imagery is discussed: 1) single set of mul-
tisensory data and 2) a temporal sequence of multisensory
data. The model used for integrating thermal and visual
imagery of outdoor scenes is based on the principle of
conservation of energy. At the surface of the imaged object
[Fig. 1(a)] energy absorbed by the surface equals the energy
lost to the environment.

(3)

Energy absorbed by the surface is is given by

(4)

where is the incident solar irradiation on a horizontal
surface and is given by available empirical models (based
on time, date and latitude of the scene) or by measurement
with a pyrheliometer, is the angle between the direction
of irradiation and the surface normal, and is the surface
absorptivity which is related to the visual reflectanceby

. Note that it is reasonable to use the visual
reflectance to estimate the energy absorbed by the surface
since approximately 90% of the energy in solar irradiation
lies in the visible wavelengths [10]. A simplified shape-
from-shading approach is used to compute and
from the visual image and is described in detail in [3]. The
energy lost by the surface to the environment is given by

(5)

where denotes the heat convected from the surface to
the air which has temperature and velocity
is the heat lost by the surface to the environment via
radiation and denotes the heat conducted from the
surface into the interior of the object. The radiation heat
loss is computed from

(6)

where denotes the Stefan–Boltzman constant,is the
surface temperature of the imaged object, and is the
ambient temperature.

The surface temperature is computed from the thermal
image based on an appropriate model of radiation energy
exchange between the surface and the infrared camera [3].
The resulting relationship between the surface temperature
and image gray level produced by the infrared camera is
of the form

(7)

where , , , and are known constants, is
the surface temperature of the imaged object,is the
wavelength of energy, m and m for
the specific camera being used,is the thermal emissivity
of the surface, and is the gray level of a pixel in the
thermal image.

The convected heat transfer is given by

(8)

where is the average convected heat transfer coefficient
for the imaged surface. For mixed air flow conditions this
coefficient may be computed by

(9)

where and are known thermophysical constants of
the surrounding air [10], is the wind speed, and is the
characteristic length of the imaged object. In the existing
method, the wind speed is measured by an anemometer and
a value of 1 m is assumed for

Considering a unit area on the surface of the imaged
object, the equivalent thermal circuit for the surface is

NANDHAKUMAR AND AGGARWAL: PHYSICS-BASED INTEGRATION OF MULTIPLE SENSING MODALITIES 149



(a) (b)

Fig. 2. (a) Visual image of a scene and (b) thermal image of the scene.

Table 1 Thermal Capacitance of Objects Commonly
Imaged in Outdoor Scenes. A Useful and Physically
Menaingful Feature for Object Recognition.

Object Thermal Capacitance(� 10
�6 J/K)

Asphalt Pavement 1.95
Concrete Wall 2.03
Brick Wall 1.51
Wood (Oak) Wall 1.91
Granite 2.25
Automobile 0.18

shown in Fig. 1(b). is the lumped thermal capacitance
of the object and is given by

where is the density of the object, is the volume, and
is the specific heat. The resistances are given by

and

1) Analyzing a Single Set of Multisensor Data:It is clear
from Fig. 1(b) that the conduction heat flux depends
on the lumped thermal capacitance of the object. A
relatively high value for implies that the object is able to
sink or source relatively large amounts of heat. An estimate
of , therefore provides us with a relative estimate of the
thermal capacitance of the object, albeit a very approximate
one. Table 1 lists values of of typical objects imaged in
outdoor scenes. The values have been normalized for unit
volume of the object.

Note that the thermal capacitance for walls and pave-
ments is significantly greater than that for automobiles
and hence may be expected to be higher for the
former regions. Plants absorb a significant percentage of the
incident solar radiation which is used for photosynthesis and
also for transpiration. Very little of the absorbed radiation
is convected into the air. Therefore, the estimate of the

will be almost as large (typically 95%) as that of
the absorbed heat flux. Thus is useful in estimating

the object’s ability to sink/source heat radiation, a feature
shown to be useful in discriminating between different
classes of objects. However, in order to minimize the
feature’s dependence on differences in absorbed heat flux,
a normalized feature was defined to be the ratio

.
The steps involved in evaluating this internal object

property from the thermal and visual image pair of a scene
are as follows. The registered thermal and visual image pair
is segmented. The simplified shape-from-shading approach
discussed in [3] yields the surface reflectance for each
region, and it yields the value of at each pixel. The
thermal image provides an estimate of surface temperature

at each pixel by using a table of values of generated
by (7) for different values of and a fast table-lookup
scheme. A value of 0.9 is assumed for the surface emissivity
of all objects. Equations (3)–(6), (8), and (9) are applied
at each pixel to estimate and thence the ratio

.
The above approach was tested on real data. Fig. 2(a)

shows the visual image of an outdoor scene. Fig. 2(b)
shows the registered thermal image of the same scene. The
above approach was used to compute (at each pixel) the
ratio between the energy conducted into the object and the
absorbed radiation. The mode of this value is computed
for each region [Fig. 3(a)]. The values of this internal
object property occur in the expected ranges for each
class of objects and help distinguish between these object
classes [Fig. 3(b)]. The values are lowest for vehicles,
highest for vegetation and in between for buildings and
pavements. Classification of objects using this property
value is discussed in [5].

2) Analyzing a Temporal Sequence of Multisensor Data:
Temporal sequences of multisensor image data are com-
monly used for remote sensing and surveillance applica-
tions. A temporal sequence of multisensor data consisting
of thermal imagery, visual imagery, and scene conditions
makes possible a more reliable estimate of the imaged ob-
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(a) (b)

Fig. 3. (a) Mode of the feature value computed for each region and (b) classification using the
feature value.

ject’s relative ability to sink/source heat radiation. Observe
that the relationship between the conducted heat flux
and the thermal capacitance of the object is given by

(10)

A finite (backward) difference approximation to this equa-
tion may be used for estimating as

(11)

where and are the time instants at which the data
were acquired, and are the corresponding
surface temperatures, and is the conducted heat flux
which is assumed to be constant during the time inter-
val. However, does vary and an average value of

is used in (11).
The above method was tested on temporal sequences

of thermal and visual image pairs acquired at intervals of
three hours. For each thermal and visual image pair (viz.
at each time instant) the method described in Section II-A
was applied to evaluate the various components of surface
energy exchange at each pixel. is thus evaluated for
each pixel at each time instant. Equation (11) is then
evaluated at each pixel, for each pair of successive data
sets in the temporal sequence. The estimated values of
for different classes are close to those listed in Table 1,
and can be used to distinguish between different classes
of imaged materials. A statistically robust scheme for
computing this parameter, and the experimental results
obtained are described in [6].

B. Integrating Sonar and Optical Imagery

Computer analysis of underwater imagery has many im-
portant military and commercial applications. These include
accurate underwater terrain assessment by autonomous un-
derwater vehicles and remotely operated vehicles, seafloor
mapping, exploration of natural resources, location of ob-
jects lost at sea, detecting mines, etc. In the past, underwater

imagery has utilized two major sensors: sonar and visual.
However, each approach by itself cannot provide suffi-
cient information to constrain the imaged object’s identity.
For instance, in sonar imaging, surfaces which differ in
roughness and other material properties may give rise
to images of similar intensities. On the other hand, the
optical surface reflectance of different object classes are
similar and hence the visual images of their surfaces might
be indistinguishable. Thus each modality needs additional
information in order to uniquely determine object identity.

A physics-based approach for automated analysis of
imagery acquired from underwater environments has been
described in [11]. The approach described in [11] is based
upon fusion of information from sonar and visual sensors to
constrain interpretation of the imaged object. An overview
of this approach is presented. The integrated interpretation
of sonar and visual data uses a physical model, called
the composite roughness model [12], which is based on
the analysis of the energy transport across the interface
between two fluids. This approach is used to estimate
material properties of the seafloor which serve as physically
meaningful features for seafloor classification.

A common use of optical imagery is for sensing the
microprofile of the imaged surface [13], [14]. Standard pho-
togrammetric techniques are applied to stereo photographs
(Fig. 4) to record heights of bottom features. The Fourier
transform of the autocorrelation of this relief produces the
2-D relief spectrum denoted as , where
are, respectively, the and components of the 2-D wave
vector, . The 2-D surface relief can be modeled by

where and are dimensionless parameters used to
describe the 2-D wave spectrum andis the wavenumber,
i.e., the magnitude of the 2-D wave vector. Hence,
and can be computed using the stereoscopic images of
the surface.

Many studies have shown that a strong relationship exists
between backscattering strength and material type. This

NANDHAKUMAR AND AGGARWAL: PHYSICS-BASED INTEGRATION OF MULTIPLE SENSING MODALITIES 151



Fig. 4. Optical stereo image pair of the seafloor. Surface roughness spectrum is computed for
this pair.

relationship is quantified in the composite roughness model
proposed by Jackson [12]. Good agreement exists between
real data and predicted values at moderate grazing angles
and frequencies of 40 kHz or higher [15]. The backscatter-
ing cross section of the surface, , is computed from
sonar data (Fig. 5). Here, is the grazing angle of the
acoustic energy. The composite roughness model which
treats the boundary between the seafloor and water as a
two-fluid interface, relates the backscattering cross section
to: 1) ratio of compressional wave speed to water sound
speed denoted as, 2) the ratio of object mass density to
water mass density denoted as, and 3) surface roughness.

The small-scale roughness backscattering cross section
is modeled by [12]

(12)

where is the acoustic wavenumber in water,
is the power spectrum of the 2-D roughness distribution
obtained from analyzing the optical stereo imagery.

(13)

The critical angle is given by .
The small-scale roughness backscattering cross section

is obtained from the sonar data. Thus is avail-
able for various values of . The power spectrum of
the 2-D roughness distribution is obtained from bottom
photographs. Hence, is available for each of the .
The backscattering cross section model, , given by
(12) and (13), is now fit to the data-derived backscattering
cross section . This is a nonlinear regression
problem where and are the parameters of the regression
fit. A least means squared error minimization technique is
adopted to compute and .

Fig. 5. Raw sonar data of seafloor. Image was formed using 69
sonar pings of a 40 kHz system. Reflections from each ping form
a radial line in the image. Azimuthal resolution is 5�.

A feature vector consisting of and is then used to
classify the seafloor, e.g., as sandy sediment or sediment
rich in manganese nodules using a minimum distance
classifier. Table 2 lists results of analyzing imagery from
a seafloor consisting of only sediment and bereft of man-
ganese nodules.

C. Interpreting Polarized Radiation

Often, an object being imaged emanates energy (reflected
or emitted energy) that has polarization information which
can be “decoded” to make inferences on the type of object
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Table 2 Estimated Values of� and� for Real Data
from Sediment. Ground Truth Values are� = 1:4,
� = 1:0014. Initial Values Were�0 = 1:85; �0 = 1:4.
Classification Based on Distance Values.

Estimated Values
Ping

� �
d
sed dMn class

0 1.07 1.0013 0.40 2.18 sed
5 1.07 1.0017 0.40 2.18 sed
10 1.08 1.0019 0.40 2.16 sed
15 1.07 1.0013 0.40 2.18 sed
20 1.07 1.0014 0.40 2.18 sed
25 1.09 1.0018 0.38 2.13 sed
30 1.08 1.0014 0.39 2.16 sed
35 1.09 1.0019 0.38 2.18 sed
40 1.08 1.0016 0.39 2.16 sed
45 1.06 1.0011 0.41 2.21 sed
50 1.07 1.0012 0.40 2.18 sed
55 1.85 1.4 0.12 0.236 sed
60 1.07 1.0012 0.40 2.18 sed

surface being sensed. Filters or sensor configurations may
be used to create different images corresponding to only
specific modes of polarization. Complementary information
from these images yields information about object structure
or material type. Two different examples are presented
below—the first discusses, briefly, the analysis of optical
imagery, and the second discusses the analysis of different
polarization channels of SAR imagery.

1) Polarized Optical Imagery:When light is incident on
commonly occurring surfaces, the reflected light consists
of either a specular component, a diffuse component or a
combination of the two. If the incident light is unpolar-
ized, the diffuse component of the reflected light remains
unpolarized while the specular component of the reflected
light becomes partially linear polarized. The degree to
which the specularly reflected component becomes partially
polarized depends on the electrical conductivity of the
reflecting surface. For materials with large conductivities,
the polarization is reduced. This property has been used to
segment metal surfaces from dielectric surfaces [16].

Consider unpolarized light incident on a surface, with
angle of incidence (with respect to the surface normal),
and the specularly reflected light at angle of emittance,
also equaling . The specular plane is defined to be the
plane containing the incident ray and the reflected ray. For
specularly reflected light the magnitude of the polarization
component perpendicular to the specular plane is larger than
magnitude of the polarization component parallel to the
specular plane. The Fresnel reflection coefficients,and

, corresponding to the polarization components that are,
respectively, perpendicular to and parallel to the specular
plane have values between zero and one. The magnitude
ratio of these polarization components is the polarization
Fresnel ratio (PFR) and equals . The value of PFR
varies with the specular angle of incidence,. Wolff argues
that for values of between 30 and 80 the value of PFR
is below 2.0 for metals and above 2.0 for dielectrics. Hence,
the PFR can be used to differentiate these two classes of
metals. Different thresholds on PFR may be used to detect
metals coated with translucent insulating materials.

One way of computing the PFR of an object in the
scene is to acquire a sequence of images using a camera in
front of which is mounted a polarizer that is incrementally
rotated. The maximum intensity, , at a pixel location,
and the minimum intensity, , at that location are
noted. The ratio approximates the PFR if the
diffuse component of the reflection is much weaker than
the specular component—which holds for many surfaces,
but is violated for a surface with highly diffuse albedo,
such as a sheet of bond paper. An alternative method
of estimating the PFR is to acquire a smaller number of
images corresponding to fewer orientations of the polarizer.
The intensity variation at any pixel is then modeled as a
sinusoidal function—and the parameters of the fitted model
are used to find and .

The above approach is hampered when the illumination
is a distributed sources instead of a point source, and also
then the specular angle of incidence is close to the grazing
angle. More recently, the approach has been extended
to distinguish edges caused by specularities from those
caused by occluding boundaries [17]. Further extensions
have been reported to include extended light sources, and
object recognition applications [18].

2) Polarized SAR Imagery:A physics-based approach
has been reported for the interpretation of ultra-wideband
(UWB) SAR imagery for object classification [19], [20].
The UWB sensor (50 MHz to 1 GHz) is used for detection
of man-made objects, including those which are obscured
by a random media, e.g., vehicles obscured by foliage,
and buried objects. An electromagnetic model is used to
predict the backscatter received from the scene objects.
The backscatter from a scene object consists of two
components: 1) an “early time” portion that precedes a 2)
late-time portion. The early-time (physical optics) portion
of the backscatter is due to reflected energy and is highly
dependent on the structure of the object surface that is
illuminated by the incident energy. The late time response is
due to resonant modes excited by the incident energy, and is
dependent on the gross shape of the object. Hence, the early
time response from scene objects that differ in structure,
such as vehicles and trees, have different sensitivity to
aspect angle of the incident wave. Aspect angle sensitivity
of the backscatter is extracted by reconstructing the SAR
image of an object over smaller subapertures of the full
synthetic aperture. This multi-aperture approach provides
important angular information while still maintaining
detectable levels in the subsequent SAR images. The
backscatter from man-made objects differs from natural
objects both in angular and polarimetric dependence. This
is primarily due to the fact that manmade objects are
more planar in structure and more conductive than natural
objects. The structure of natural objects, such as trees and
rocks, changes in a random manner with viewpoint, and
hence, the aspect-angle dependence of backscatter from nat-
ural objects is more random that that for man-made objects.
This characteristic is used to develop feature vectors using a
multi-aperture approach to discriminate vehicles hidden in a
deciduous forest from surrounding objects of little interest.
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(a) (b) (c)

Fig. 6. Approximation of early-time portion of backscatter for a flat plate: (a) the incident wave
illuminates the plate at aspect angle�, (b) the silhouette area functionS(z) is determined, and (c)
the second derivative of the function is used in the physical optics approximation to estimate
the backscatter.

(a) (b) (c)

Fig. 7. UWB-SAR image of a pickup truck (a) using full aperture, (b) quarter subaperture which
is off-broadside of truck, and (c) quarter subaperture which is along broadside of truck.

Considering the physical optics or early time portion of
the energy scattered by the imaged surface, and assuming
an impulse incident wave, the resulting scattered wave is
given by

(14)

where the is the contribution of the incident wave
in generating the local surface current at, is the
silhouette area of the scatterer projected along the direction
of propagation of the incident wave,, and ;
at the beginning of the scatterer. Equation (14) can be used
to provide a simple approximation of the scattered field due
to the incident impulse wave [21] and it is evident that the
scattered field will be dependent on aspect angle since
changes with aspect angle to the scatterer. An example of
this calculation is shown in Fig. 6 for a flat plate of length

where the incident wave arrives at aspect angleto
the surface of the plate. We observe that the backscatter
will consist of two finite valued peaks which are due to
surface discontinuities at the edges and tips of the plate.
These closely spaced peaks have a maximum magnitude
when the direction of propagation for the incident wave is
normal to the plate surface.

The aspect angle sensitivity of an imaged object can be
computed as follows. First, a SAR image is reconstructed
using all range profiles that are collected at various
aspect angles across the synthetic aperture angle interval,

. An object of interest is detected when a pixel in the
image is found to exceed a local contrast threshold, i.e.,
a “glint” is detected. Next, the range image profiles
are grouped into subsets of consecutively
acquired (adjacent) range profiles, each subset comprising a
single subaperture. An image of an object of interest can be
reconstructed using the range profiles of a single subaper-
ture. When this is done for each subaperture, aspect angle
sensitivity of the object’s backscatter can be determined by
examining the variation of the object’s backscatter across
the different subapertures.

The SAR system used in the study was fully polarimetric,
in that the radar has the capability of transmitting two
orthogonal polarizations consecutively and receiving two
orthogonal polarizations simultaneously at each point along
the aperture. Therefore, multi-aperture processing can be
applied to both co- and cross-polarized channels. Given
two orthogonal polarization bases and , and

are defined to be the backscatter energy as a function
of subaperture position (aspect-angle) for the co-polarized
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(a) (b)

Fig. 8. Aspect angle dependence of backscatter from (a) broadside vehicle (truck) and clutter (tree)
where “specular flash” is observed at aperture position seven and (b) truck whose specular flash is
not observed and tree which appears aspect angle dependent.

channels where first and second subscripts indicate transmit
and receive polarizations, respectively. Similarly, multi-
aperture processing of cross polarized channels results in

and —however, due to symmetry, cross
polarized returns are generally similar to one another. A
normalized correlation coefficient is defined

(15)

The coefficients and may be defined in
a similar manner. The coefficient value is bounded by

, if and only if and
are independent, and if and only if

, where is a constant. A feature vector can now
be formulated whose elements are correlation coefficients

, , .
Consider man-made vehicles and natural objects in an

imaged scene. Vehicles are generally metallic and have
more large, flat planar surfaces than objects occurring in
nature such as trees, rocks, etc. Hence, at certain aspect
angles, the radar may observe a large increase in backscatter
from vehicles due to specular reflections. In contrast, trees,
tree limbs, and foliage will not exhibit this large increase in
backscatter, and will have more random fluctuations with
aspect angle due to small radar cross section and random
distribution in a resolution cell. The backscatter is indepen-
dently random for both co- and cross-polarized channels.
Therefore, the correlation coefficient defined in (15) will
be low for natural objects. The response for vehicles will
be similar for both co- and cross-polarized channels and,
consequently, the correlation coefficient defined in (15) will
be larger for vehicles than for natural objects.

The UWB SAR images of a pickup truck using the
full aperture and two subapertures are shown in Fig. 7.
The aspect-angle signatures for the broadside truck and
a tree are shown in Fig. 8(a). An increase in backscatter
energy is observed near aperture position seven, where
the specular flash from the vehicle is observed. The tree,

on the other hand, has a random but bounded backscatter
energy across the aperture, as expected. However, two
factors may degrade detection performance or increase false
alarm rates using this approach: 1) due to changing foliage
density with aspect angle, clutter can often appear to be
aspect angle dependent, and 2) the specular flash from the
vehicle may not be observed along the synthetic aperture,
making it difficult to discriminate between vehicles and
clutter [Fig. 8(b)]. These difficulties are overcome by using
the feature vector described above, which combines both
angular and polarimetric diversity information (Fig. 9).

D. Other Imaging Sensors

The physics-based approach has been used for the inte-
gration of other types of sensors, in addition to the imaging
modalities discussed above. A brief overview of some
examples are given below.

1) Color Image Interpretation:Color may also be con-
sidered to be multisensory information since irradiation
in three different spectral bands are sensed. Initial work
in physics based interpretation of color imagery was con-
ducted by Klinkeret al. [22] who discuss the segmentation
of objects using physical models of color image generation.
Their model consists of a dichromatic reflection model that
is a linear combination of surface reflection (highlights) and
reflection from the surface body. The combined spectral
distribution of matte and highlight points forms a skewed
T-shaped cluster in red-green-blue space, where the matte
points lie along one limb of the T and the highlight points
lie along the other limb. Principal component analysis
of color distributions in small nonoverlapping windows
provides initial hypotheses of the reflection type. Adjacent
windows are merged if the color clusters have similar
orientations. These form “linear hypotheses.” Next, skewed
T-shaped clusters are detected. This specifies the dichro-
matic model used to locally resegment the color image via
a recursive region merging process. Thus a combination of
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Fig. 9. Full polarimetric multi-aperture response of (a) pickup truck oriented broadside
with specular flash at position seven, producing a feature vectorR = (0:93 0:57 0:25),
(b) tree (R = (0:01 0:04�0:04)), (c) pickup truck whose specular flash is not ob-
served (R = (0:75 0:71 0:92)), and (d) tree which appears aspect angle dependent
(R = (0:36 0:23�0:32)).

bottom-up and top-down processing segments images into
regions corresponding to objects of different color.

Healey [23], [24] reports a color segmentation approach
that uses a reflection model that includes metallic as well
as dichromatic surfaces. The segmentation algorithm con-
siders the color information at each pixel to comprise a
Gaussian random vector with three variables. Segmentation
is achieved by a recursive subdivision of the image and by
the analysis of resulting region level statistics of the random
vector. This physics based approach has been extended for
object recognition using color information [25], [26].

2) Radar and Optical Imagery:The integration of visual
images and low-resolution microwave radar scattering cross
sections to reconstruct the three-dimensional (3-D) shapes
of objects for space robotic applications is discussed in
[27]. Their objective is to “combine the interpreted output
of these sensors into a consistent world view that is
in some way better than its component interpretations.”
The visual image yields contours and a partial surface
shape description for the viewed object. The radar system
provides an estimate of the range and a set of polarized
radar scattering cross sections, which is a vector of four

components. An “intelligent decision module” uses the
information derived from the visual image to find a standard
geometrical shape for the imaged object. If this is possible,
then a closed form expression is used to predict the radar
cross section. Otherwise, an electromagnetic model uses the
sparse surface description to compute the radar cross section
using a finite approximation technique. The unknown shape
characteristics of the surface are then solved for iteratively
based on minimizing the difference between the predicted
and sensed radar cross section. This technique is illustrated
by a simulation reported in [27].

III. I NTEGRATION OF IMAGE AND MODEL INFORMATION

Model-based object recognition is a commonly adopted
paradigm in computer vision and pattern recognition,
wherein features extracted from a region in the image
are compared with those stored in a model—resulting in
classification of the image region. This paradigm is easily
extended to include a physics-based approach where the
features stored in object models are based on material
properties. A further extension is possible in which the
model stores the values of physical properties (such
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as density, specific heat, conductivity) of the materials
that comprise the object. For an image region under
consideration, a hypothesis is made of the identity of the
object, and hence of the materials present in the scene. The
values of these materials’ properties as stored in the model,
along with image gray levels at the locations at which these
materials are hypothesized to occur, are used to compute
a feature. The value of this feature is used to verify or
refute the hypothesis. The feature is based on a physics
based approach similar to that described in Section II-A.
An overview of such an approach used for recognition of
objects in long wave infrared (LWIR) imagery is presented
below [28]–[30].

A. Features Using Model and Image Information

Applying the principle of conservation of energy at the
surface of an imaged object yielded the energy balance
equation (3) and (5) in Section II-A. While those equations
applied for thin plate objects, a more general form that
accounts for nonuniform temperature distributions in the
material is given by

(16)

where , , and are as defined earlier,
is the energy used to raise the temperature of the local
infinitesimal volume at the surface of the object, and
is the energy conducted into the interior of the object. Hence
we have and , where is the
thermal conductivity, and is the depth from the surface.

The new energy balance equation may be rewritten in
the following linear form

(17)

Using the expressions for the various energy components
as presented in the previous section we can express each
term in the above expression as

(18)

Note that a calibrated LWIR image provides radiometric
temperature (assuming which is true for most
surfaces). Hence and can be computed from the LWIR
image alone (and knowledge of the ambient temperature),
while , , and are provided by the model when the
identity and pose of the object is hypothesized. The “driving
conditions,” or unknown scene parameters that can change
from scene to scene are given by the .
Thus each pixel in the thermal image equation (18) defines
a point in 5-D thermophysical space.

Consider two different LWIR images of a scene obtained
under different scene conditions and from different view-
points. For a given object, points are selected such that
1) the points are visible in both views and 2) each point

lies on a different component of the object which differs
in material composition and/or surface orientation. Assume
(for the nonce) that the object pose for each view, and point
correspondence between the two views are available (or
hypothesized). A point in each view yields a measurement
vector with components defined
by (18) and a corresponding driving conditions vector

. Let a collection of of these
vectors compose a matrix,
for the first scene/image. These same points in the second
scene will define vectors that compose a matrix,

. The driving condition matrix,
, from the first scene and

from the second scene, are each of size
.

Since the points are selected to be on different
material types and/or different surface orientations, the
thermophysical diversity causes the vectors
to span , as will also the vectors, . Without
loss of generality, assume that vectors span
and also that span . These five points specify
the measurement matrices,
and , corresponding to the first and
second scene, respectively. The point selection process here
is analogous to the selection of characteristic 3-D points
in the construction of geometric invariants. Sinceand

are of full rank, there exists a linear transformation
such that . Hence, an induced nonsingular linear
transformation can be shown to exist betweenand .

Consider the measurement vectorof a point as defined
in (18). From one scene to the next we expect the two object
properties—thermal capacitance and conductance—to
remain constant. Hence the linear transformation

must be of the form

(19)

The transformation of a measurement vector from one scene
to the next is given by

(20)

The first two elements, the thermal capacitance and the
thermal conductance, are held constant and the other scene
dependent elements are allowed to change. In general, we
have , where and are the matrices
derived from the two scenes and for the chosen points.

Algebraic elimination of the transformation parameters
using four copies of the linear form (17) subjected to
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Fig. 10. Three of the five vehicles used to test the object recognition approach. From top left
(clockwise): tank, truck 1, and truck 2. The axis superimposed on the image show the object
centered reference frames. The numbered points indicate the object surfaces used to form the
measurement matrices. These points are selected such that there are a variety of different materials
and/or surface normals within the set.

the transformation (19) provides us with invariants, i.e.,
functions of the measurement vectors for a scene, which
remain constant and are independent of the driving con-
ditions and the transformation. This elimination may be
performed by using recently reported symbolic techniques
[31]. The five invariant functions derived by this elimina-
tion process can be divided into two types. Each is a ratio
of determinants. The first type of invariant function uses
determinants formed from components of three of the four
vectors.

(21)

where is a th component of the th vector (th
point).

The second type is formed from components of all four
vectors.

(22)

where is a th component of the th vector (th
point). Since the four measurement vectors span, we
can assume without loss of generality that the denominator
determinants in (21) and (22) are nonzero. The first type
has , independent functions given four points and
second type has one.

In order for the invariant feature to be useful for object
recognition not only must the values of the feature, be
invariant to scene conditions but the value must be different
if the measurement vector is obtained from a scene that does
not contain the hypothesized object, and/or if the hypothe-
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Table 3 Values of the I1–Type Feature Used to Identify the Vehicle Class, Truck 1. The Feature
Consisted of Point Set {4,7,8,10} Corresponding to the Points Labeled in the Figure. The Feature
Value is Formed Using the Thermophysical Model of Truck 1 and the Data from the Respective
Other Vehicles. When this Feature is Applied to the Correctly Hypothesized Data of the Tank, It
has a Mean Value of�0.57 and a Standard Deviation of 0.13. This I1–Type Feature Produces a
Good Stability Measure of 4.5, and Good Separability Between Correct and Incorrect Hypotheses.
The Feature Values for Incorrect Hypotheses are at Least 3.32 Standard
Deviations Away from the Mean Value for the Correct Hypothesis

Hypothesis:
Data From:

Truck 1
Truck 1

Truck 1
Tank

Truck 1
Van

Truck 1
Car

Truck 1
Truck 2

11 am �0.70 27.28 0.33 �1 0.68
12 pm �0.71 0.09 4.83 15.58 4.15
1 pm �0.45 0.68 0.00 11.73 4.6e12
2 pm �0.66 �1.00 �1 71.23 �1.00
3 pm �0.40 �1.00 �1 �1.00 �1.00
4 pm �0.54 �1 1 5.42 22.29
9 am �0.68 1.38 �1.00 �6.66e14 �7.03
10 am �0.45 �1.00 �1 6.50 1

sized pose is incorrect. Since the formulation above takes
into account only feature invariance but not separability,
a search for the best set of points that both identifies the
object and separates the classes must be conducted over a
given set of points identified on the object.

B. Scheme for Object Recognition

The hypothesize-and-verify scheme for object recogni-
tion consists of the following steps: 1) extract geometric
features, e.g., lines and conics, 2) for image region,,
hypothesize object class,, and pose using, for example,
geometric invariants as proposed by Forsythet al. [32], 3)
use the model of object and project visible points labeled

onto image region using scaled orthographic
projection, 4) for point labeledin the image region, assign
thermophysical properties of point labeledin the model of
object , 5) using gray levels at each point and the assigned
thermophysical properties, compute the measurement matri-
ces and , and hence compute the feature using
(14) or (15), and finally, 6) compare feature with
model prototype to verify the hypothesis.

The above technique was applied to real LWIR imagery
acquired at different times of the day. Several types of
vehicles were imaged. Three of these vehicles are shown
in Fig. 10. Several points were selected (as indicated in
the figures) on the surfaces of different materials and/or
orientation. Given an image of a vehicle, 1) the pose of
the vehicle is assumed known, then 2) the front and rear
wheels are used to establish an object centered reference
frame. The center of the rear wheel is used as the origin, and
center of the front wheel is used to specify the direction and
scaling of the axes. The coordinates of the selected points
are expressed in terms of this 2-D object centered frame.
For example, when a truck-1 vehicle is hypothesized for
an image actually obtained of a tank or some unknown
vehicle, the material properties of the truck-1 are used,
but image measurements are obtained from the image of
the tank at locations given by transforming the coordinates
of the truck-1 points (in the truck-1 centered coordinate
frame) to the image frame computed for the unknown
vehicle. The features are computed based on the image

data and model information. Table 3 shows interclass and
intraclass variation for a feature of type under the truck-1
hypothesis—for images obtained from different vehicles at
eight different times over two days. The feature of type
exhibits similar behavior—high between-class separation
and low within-class variation.

IV. SYNTHESIS OF MULTISENSORY IMAGERY

Model derived features and imagery are useful in the de-
velopment of recognition systems that use trainable classi-
fiers, or other model-driven approaches. In order to achieve
low error rates it is necessary to train the classifier on
multiple images of the same object in a variety of scene
conditions. This requires the existence of a large training
database. Creating this database using real scene imagery is
expensive and sometimes impossible. It is also difficult to
maintain a large database for training. Furthermore, if the
classifier is to be trained on multimodal data the size of the
data set is even greater. An attractive solution to the storage
and data acquisition problems is to create accurate artificial
images of the objects. Not only are storage space and
database maintenance requirements lessened, but computer
generation of object imagery provides greater flexibility in
specifying environmental and object conditions. A unified
model of different modes of sensing, such as visual, ther-
mal, and ladar, augments the ability to quickly generate
a large multisensory data set for training, without the
expense of field work. These reasons have motivated the
development of synthetic image generation and feature
prediction systems.

One of the principal issues facing researchers in the
area of recognition systems is the establishment of models
that can simulate the image-generating physical processes
peculiar to each of the different imaging modalities. Further,
it is attractive to use a single modeling scheme that can be
used for the different modalities. Early work in this area by
Ohet al. [33] addressed the generation of thermal and visual
imagery using 3-D object models stored in the form of
octrees [34]. The simulation of energy exchange and energy
flows within the object gave rise to predictions of surface
temperatures and hence the thermal image, while the 3-D
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(a)

(b)

Fig. 11. The quadtree representation of a binary image, and the
octree representation of a 3-D object.

surface was used to create the visual image. Further work by
Karthik et al. [35], increased the accuracy of the model by
incorporating nonhomogeneities in the object model. This
approach was further augmented to allow the simulation
of laser radar (range, reflectance, and doppler) imagery in
addition to the visual and infrared modalities [36], [37]. An
overview of this approach is presented below.

When the goal of the simulation is to generate prediction
of only feature values used for recognition—as opposed
to imagery—then, a more efficient scheme may be used.
Rather than model a fully tessellated 3-D object, one
can represent (at a coarse level of resolution) only the
major components of an object, each consisting of uniform
material properties. Thus very few nodes are used in
the simulation of energy flows and exchange. Accurate
prediction of multisensory physics-based features have been
produced by this approach [38].

A. 3-D Object Model Construction

The 3-D object model is represented in the form of an
octree. The octree of a 3-D object is obtained by subdivid-
ing the universe into eight equal octants successively until
each octant corresponds either to an empty space or to a
volume inside the object. The octree is an extension of a
quadtree which may be used to represent 2-D objects. The
quadtree of a binary image is obtained by subdividing the
image into four quadrants successively until each quadrant
is either entirely black or white. Each quadrant is then a
node in the tree. Each node has either four children or is a
leaf node. The nodes can be white, black or gray. A gray
node is not a leaf node and has four child nodes that can
be gray, white, or black nodes. The quadtree and octree
representations are illustrated in Fig. 11.

Multiple silhouettes are used as the input to the octree
formation. The contour of each silhouette is smoothed using
a tension spline and the contour normal at each contour
pixel is computed. For each view, a region contour (RC)
quadtree is constructed, wherein a node can be either black
(object), white (nonobject), contour (contour pixel), or gray
(parent of others). The contour normal is stored with each
contour node. Using the RC quadtree from different views,

(a) (b)

(c) (d)

Fig. 12. Visual Image of object reconstructed from three silhou-
ettes showing false surfaces resulting from the “basic” volume
intersection approach.

Fig. 13. Visual image of object reconstructed using the improved
volume intersection technique based on silhouette partitioning.

a volume intersection is performed and a volume surface
(VS)-octree is constructed, wherein the nodes are black
(internal), white (empty), surface, or gray (parents of the
others). Each surface node is encoded with the surface
normal. The above approach suffers from the disadvantage
that concave boundaries in the silhouettes result in false
volumes in the 3-D reconstruction. However, these errors
may be avoided by using line-drawing information to par-
tition the silhouettes into different regions prior to volume
intersection [37].

B. Generating Different Imagery

1) Visual Image Generation:It is easy to generate the
visual image of an object from its octree representation. All
the surface nodes are scanned and checked for visibility.
Only the visible faces of the leaf nodes (voxels) are
projected to form the visual image. Lambertian or other
reflectance functions may be assumed. Either orthographic,
weak perspective, or perspective projection can be em-
ployed. Any arbitrary viewpoint as well as the direction of
illumination can be specified. Figs. 12 and 13 are examples
of results generated by this process.
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2) Thermal Image Generation:Each voxel (leaf node) in
the octree is encoded with thermophysical material prop-
erties and links are attached to spatially adjacent nodes.
Applying the conservation of energy to each node we have
the energy balance law

(23)

where is the mass density, is the specific heat, is the
volume of the node, denotes the temperature of the node,
subscript denotes the node number (spatial location),
superscript represents the time instant, denotes
the time interval, is the magnitude of solar irradiation,

is the angle between the direction of solar irradiation
and the surface normal, is the absorptivity of the node,

is the surface area of the node (relevant face),is the
volumetric heat generation, is the number of adjacent
nodes, is the thermal conductivity, is the area of
the interface between the nodeand each of the adjacent
nodes, is the distance between the centroid of node
and the centroid of theth adjacent node, is the convection
coefficient, is the ambient temperature, and is the
radiation coefficient. The above process is simulated for
the desired environmental and object conditions to predict
surface temperatures.

The gray level, , produced by an infrared camera
operating in the 8 m–12 m band and at distances of up
to a few hundred meters from commonly occurring objects
is related to the surface temperature,, by

(24)

where m, m, and are constants
with and

. and are constants based on the camera
and digitizing parameters. Thus the surface temperatures
can be projected using the same technique as for visual
imagery and then transformed by the above expression to
produce the thermal image.

3) Ladar Range Image:An AM ladar range image is
created by sensing the difference between the phase of
the modulation envelope of the transmitted signal and
that of the received signal. Since the phase difference is
periodic with a period of , the range measurement is only
available as a fraction of the wavelength. The ambiguity
interval for AM ladar can be written as

(25)

where is the ambiguity interval, is the speed of light,
and is the modulation frequency.

A range measurement is subject to noise. Let the actual
range be given by

(26)

Fig. 14. Simulated ladar images of a T-72M1 tank model syn-
thesized from silhouettes. The images contain real backgrounds
with the simulated object placed in the scene. The top image is the
absolute range image. The middle image is the fine range image
with a ambiguity interval of 19.8 m. The bottom image is the
reflectance image. Constructive and destructive interference noise
has been simulated on the object and its effect on the reflectance
image is shown. Destructive interference prevents extraction of
range information. This effect on the fine range image is shown.

where is the number of ambiguity intervals,
is the fraction of the ambiguity interval measured by the
sensor, and is the wavelength of the modulating envelope.
The range including effects of noise is

(27)

is the output of the laser radar imaging
system. is the noise [39]

(28)

where is the Rayleigh distributed noise amplitude,
is the Rayleigh distributed signal amplitude, SNR

is the detector signal to noise ratio, and is the
uniformly distributed phase error. Typically, a modulating
frequency wavelength of 15–20 m is used for relative range,
depending on the object to be sensed. In addition to noise
in the range values, speckle noise due to rough surfaces is

NANDHAKUMAR AND AGGARWAL: PHYSICS-BASED INTEGRATION OF MULTIPLE SENSING MODALITIES 161



common. Appropriate statistical models of this process can
be used to simulate speckle noise in the reflectance image.
Fig. 14 shows an example of ladar image synthesis.

V. CONCLUSION

In this paper we described a new class of techniques
for integrating information from different sensing modali-
ties—a physics-based approach that used appropriate phys-
ical models of the image generation process. These models
usually rely on the principle of conservation of energy,
which when applied to the imaged scene provides analytical
constraints between material properties and the imaged gray
levels. This approach makes available physically meaning-
ful object features that are highly specific—they provide
good separation between different classes of objects.

The advantages of multisensory approaches to computer
vision are evident from the discussions in the previous
sections. The integration of multiple sensors and/or multiple
sensing modalities is an effective method of minimizing
the ambiguities inherent in interpreting perceived scenes.
Although the multisensory approach is useful for a variety
of tasks including pose determination, surface reconstruc-
tion, object recognition, and motion computation, among
others—the current paper addressed the problem of object
recognition. Several problems that were previously difficult
or even impossible to solve because of the ill-posed nature
of the formulations are converted to well-posed problems
with the adoption of a multisensory approach.

Recent and continuing developments in multisensory
vision research may be attributable to several factors,
including: 1) new sensor technology that makes affordable
previously unexplored sensing modalities, 2) new scientific
contributions in computational approaches to sensor fusion,
and 3) new insights into the electro-physiological mecha-
nisms of multisensory perception in biological perceptual
systems. Most of the progress to date may be attributed to
the second cause listed above. The development of new,
affordable sensors is currently an important and active area
of research and may be expected to have a significant future
impact on the capabilities of vision systems. For example,
the availability of low cost imaging laser ranging sensors,
passive infrared sensors, and high frequency radar imagers
would provide significant impetus to research in developing
multisensor-based autonomous navigation, object recogni-
tion, and surface reconstruction techniques. Many lessons
from nature are yet to be learned neuro-physiological and
psycho-physiological studies of natural perceptual systems.
Such studies may provide useful clues for deciding what
combination of sensing modalities are useful for a specific
task, and may also provide new computational models for
intersensory perception.
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